SPECIFICATION

PART NO.OEL9M1007-R-E

This specification maybe changed without any notice in order to improve performance or quality etc. Please contact TRULY Semiconductors LTD. OLED R&D department for update specification and product status before design for this product or release the order.

PRODUCT CONTENTS

- PHYSICAL DATA
- ABSOLUTE MAXIMUM RATINGS
- EXTERNAL DIMENSION
- ELECTRICAL CHARACTERISTICS
- TIMING OF POWER SUPPLY
- ELECTRO-OPTICAL CHARACTERISTICS
- INTERFACE PIN CONNECTIONS
- COMMAND TABLE
- INITIALIZATION CODE
- SCHEMATIC EXAMPLE
- RELIABILITY TESTS
- OUTGOING QUALITY CONTROL SPECIFICATION
- CAUTIONS IN USING OLED MODULE

TRUL	Y [®] 信利	Customer	
Written by	He Kai	Ap	proved by
Checked by	Yang Xueyu		
Approved by	Zhang Weicang		

REVISION HISTORY

Rev.	Contents	Date
0.1	Initial release.	2016-04-08

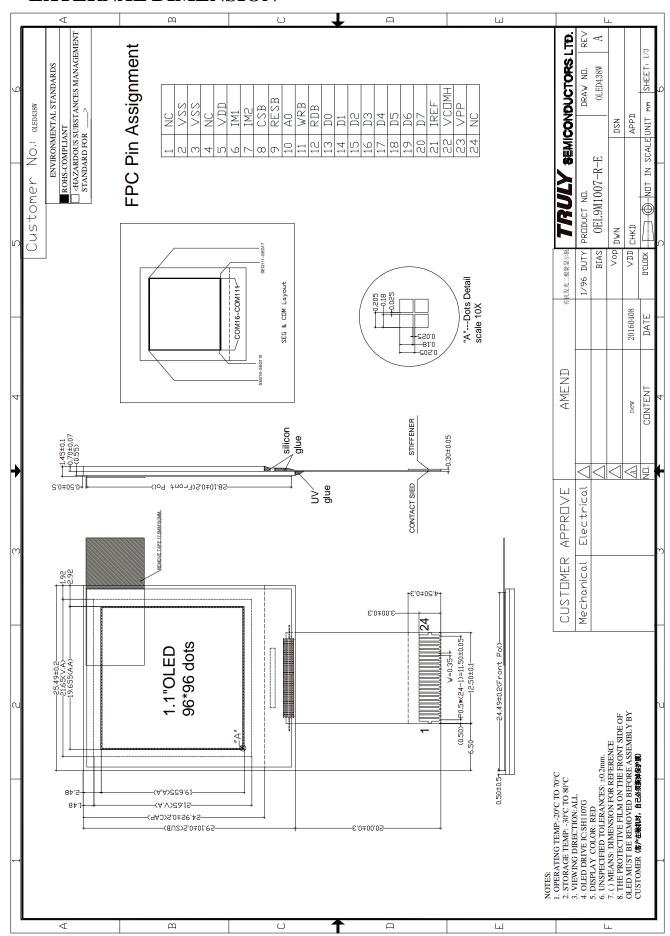
■ PHYSICAL DATA

No.	Items:	Specification:	Unit
1	Diagonal Size	1.1	Inch
2	Resolution	96(H) x 96(V)	Dots
3	Active Area	19.655(W) x 19.655 (H)	mm^2
4	Outline Dimension (Panel)	25.49 (W) x 29.10 (H)	mm ²
5	Pixel Pitch	0.205 (W) x 0.205 (H)	mm^2
6	Pixel Size	0.18 (W) x 0.18 (H)	mm^2
7	Driver IC	SH1107G	-
8	Display Color	Red	-
9	Gray scale	1	Bit
10	Interface	Parallel / SPI/ I ² C	-
11	IC package type	COG	-
12	Module connecting type	ZIF	-
13	Panel Thickness	1.45 ± 0.1	mm
14	Weight	TBD	g
15	Duty	1/ 96	-

■ ABSOLUTE MAXIMUM RATINGS

Unless otherwise specified, $V_{SS} = 0V$

 $(Ta = 25 ^{\circ}C)$

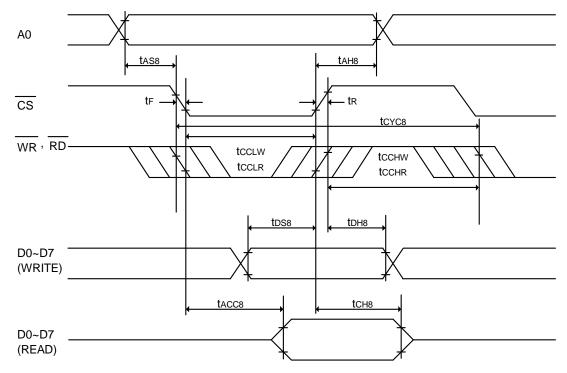

Items		Symbol	Min.	Тур.	Max	Unit	
Supply	Logic	V_{DD}	-0.3	-	+3.6	V	
Voltage	Driving	V_{PP}	-0.3	-	17.0	V	
Operating Temperatur	re	Тор	-20	-	70	$^{\circ}$	
Storage Temperature		Tst	-30	-	80	$^{\circ}$ C	
Humidity		-	-	-	90	%RH	

NOTE:

Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. Functional operation should be restricted to the conditions as detailed in the operational sections of this data sheet. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

■ EXTERNAL DIMENSION

■ ELECTRICAL CHARACTERISTICS

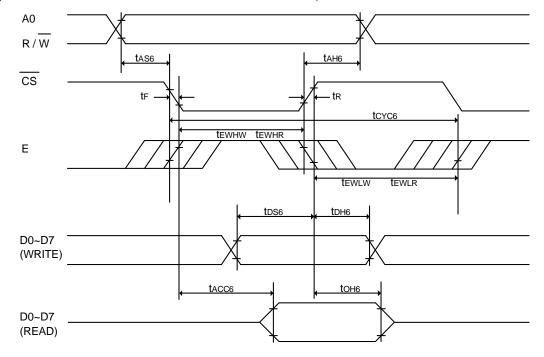

◆ DC Characteristics

Unless otherwise specified, $V_{SS} = 0V$, $V_{DD} = 1.65V$ to 3.5V, AVDD=2.4 V to 3.5V $(Ta = +25^{\circ}C)$

I	tems	Symbol	Min	Typ.	Max	Unit
Supply	Logic	V_{DD}	1.65	ı	3.5	V
Voltage	Operating	V_{CC}	7.0	1	16.5	V
Input	High Voltage	V_{IH}	$0.8 \times V_{DD}$	-	V_{DD}	V
Voltage	Low Voltage	V_{IL}	Vss	-	0.2 x V_{DD}	V
Output	High Voltage	V_{OH}	$0.8 \times V_{DD}$	1	V_{DD}	V
Voltage	Low Voltage	V_{OL}	Vss	-	0.2 x V_{DD}	V

♦ AC Characteristics

(1) System buses Read/Write characteristics 1 (For the 8080 Series Interface MPU)

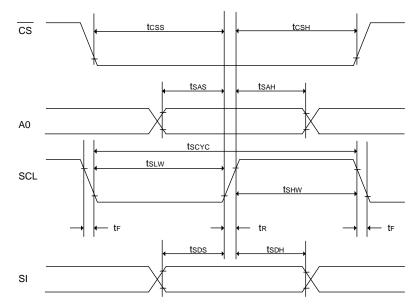

 $(VDD = 1.65V - 2.4V, TA = +25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tcyc8	System cycle time	300	-	-	ns	
tAS8	Address setup time	0	ı	ı	ns	
tah8	Address hold time	0	-	-	ns	
tDS8	Data setup time	40	ı	ı	ns	
tDH8	Data hold time	30	ı	ı	ns	
tCH8	Output disable time	10	ı	70	ns	CL = 100pF
tACC8	RD access time	ı	ı	280	ns	CL = 100pF
tcclw	Control L pulse width (WR)	100	-	-	ns	
tCCLR	Control L pulse width (RD)	120	-	-	ns	
tcchw	Control H pulse width (WR)	100	1	1	ns	
tcchr	Control H pulse width (RD)	100	1	-	ns	
tR	Rise time	ı	ı	15	ns	
tF	Fall time	ı	ı	15	ns	

 $(VDD = 2.4V - 3.5V, TA = +25^{\circ}C)$

Symb ol	Parameter	Min.	Тур.	Max.	Unit	Condition
tCYC8	System cycle time	300	-	-	ns	
tAS8	Address setup time	0	-	-	ns	
tAH8	Address hold time	0	-	-	ns	
tDS8	Data setup time	40	-	-	ns	
tDH8	Data hold time	15	-	-	ns	
tCH8	Output disable time	10	-	70	ns	CL = 100pF
tACC8	RD access time	-	-	140	ns	CL = 100pF
tcclw	Control L pulse width (WR)	100	-	ı	ns	
tCCLR	Control L pulse width (RD)	120	-	-	ns	
tcchw	Control H pulse width (WR)	100	-	-	ns	
tcchr	Control H pulse width (RD)	100	-	-	ns	
tR	Rise time	-	-	15	ns	
tF	Fall time	-	-	15	ns	

(2) System buses Read/Write Characteristics 2 (For the 6800 Series Interface MPU)

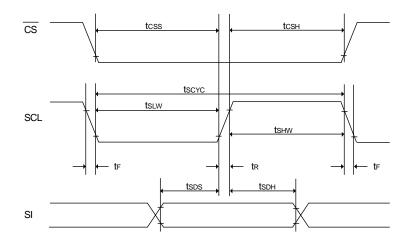

 $(VDD = 1.65 - 2.4V, TA = +25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Cond ition
tCYC6	System cycle time	300	-	-	ns	
tAS6	Address setup time	0	-	-	ns	
tAH6	Address hold time	0	1	-	ns	
tDS6	Data setup time	40	-	-	ns	
tDH6	Data hold time	30	-	-	ns	
tOH6	Output disable time	10	-	70	ns	CL = 100pF
tACC6	Access time	-	-	280	ns	CL = 100pF
tewhw	Enable H pulse width (Write)	100	-	-	ns	
tewhr	Enable H pulse width (Read)	120	-	-	ns	
tEWLW	Enable L pulse width (Write)	100	-	-	ns	
tEWLR	Enable L pulse width (Read)	100	-	-	ns	
tR	Rise time	-	-	15	ns	
tF	Fall time	-	•	15	ns	

 $(VDD = 2.4 -3.5V, TA = +25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tCYC6	System cycle time	300	-	-	ns	
tAS6	Address setup time	0	-	-	ns	
tAH6	Address hold time	0	-	-	ns	
tDS6	Data setup time	40	-	-	ns	
tDH6	Data hold time	15	-	-	ns	
tOH6	Output disable time	10	-	70	ns	CL = 100pF
tACC6	Access time	-	-	140	ns	CL = 100pF
tewnw	Enable H pulse width (Write)	100	-	-	ns	
tewhr	Enable H pulse width (Read)	120	-	-	ns	
tEWLW	Enable L pulse width (Write)	100	-	-	ns	
tEWLR	Enable L pulse width (Read)	100	-	-	ns	
tr	Rise time	-	-	15	ns	
tF	Fall time	-	-	15	ns	

(3) System buses Write characteristics 3 (For 4 wires SPI)


 $(VDD1 = 1.65 - 2.4V, TA = +25^{\circ}C)$

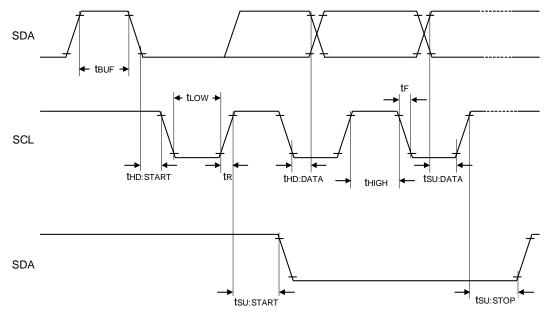
Symbol	Parameter	Min.	Тур.	Max.	Unit	Cond it ion
tscyc	Serial clock cycle	500	-	-	ns	
tsas	Address setup time	300	-	-	ns	
tsah	Address hold time	300	-	-	ns	
tsds	Data setup time	200	-	-	ns	
tsdh	Data hold time	200	-	-	ns	
tcss	CS setup time	240	-	-	ns	
tcsh	CS hold time time	120	-	-	ns	
tshw	Serial clock H pulse width	200	-	-	ns	
tslw	Serial clock L pulse width	200	-	-	ns	
tR	Rise time	-	-	30	ns	
tF	Fall time	-	-	30	ns	

$$(VDD1 = 2.4 - 3.5V, TA = +25^{\circ}C)$$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tscyc	Serial clock cycle	250	-	-	ns	
tsas	Address setup time	150	-	-	ns	
tsah	Address hold time	150	-	-	ns	
tsds	Data setup time	100	-	-	ns	
tsdh	Data hold time	100	-	-	ns	
tcss		120	-	-	ns	
tcsh	_	60	1	-	ns	
tshw	Serial clock H pulse width	100	-	-	ns	
tslw	Serial clock L pulse width	100	-	-	ns	
tR	Rise time	-	-	15	ns	
tF	Fall time	-	-	15	ns	

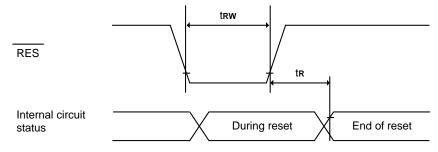
(4) System buses Write characteristics 4(For 3 wires SPI)

 $(VDD1 = 1.65 - 2.4V, TA = +25^{\circ}C)$


Symbol	Parameter	Min.	Тур.	Max.	Unit	Cond it ion
tscyc	Serial clock cycle	500	-	-	ns	
tsds	Data setup time	200	-	-	ns	
tsdh	Data hold time	200	-	-	ns	
tcss	CS setup time	240	-	-	ns	
tcsh	CS hold time time	120	-	-	ns	
tshw	Serial clock H pulse width	200	-	-	ns	
tslw	Serial clock L pulse width	200	-	-	ns	
tR	Rise time	-	-	30	ns	
tF	Fall time	-	-	30	ns	

 $(VDD1 = 2.4 - 3.5V, TA = +25^{\circ}C)$

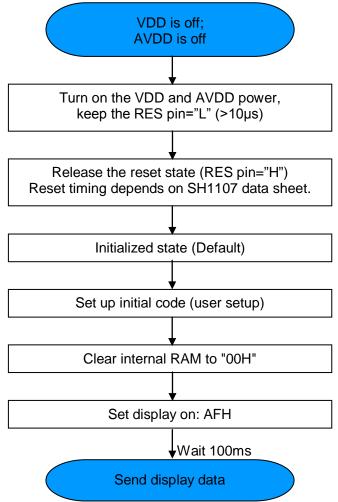
Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tscyc	Serial clock cycle	250	-	-	ns	
tsds	Data setup time	100	-	-	ns	
tsdh	Data hold time	100	-	1	ns	
tcss	_	120	-	-	ns	
tcsh	_	60	-	-	ns	
tshw	Serial clock H pulse width	100	-	-	ns	
tslw	Serial clock L pulse width	100	-	-	ns	
tr	Rise time	-	-	15	ns	
tF	Fall time	-	-	15	ns	


(5) I²C interface characteristics

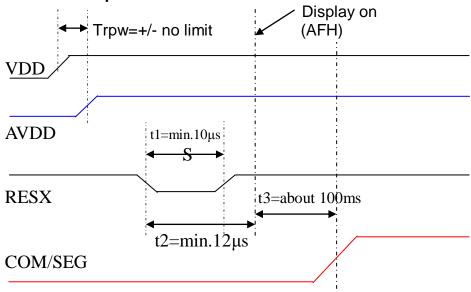
 $(VDD = 1.65 - 3.5V, TA = +25^{\circ}C)$

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
fscl	SCL clock frequency	DC	-	400	kHz	
TLOW	SCL clock Low pulse width	1.3	-	-	μs	
Thigh	SCL clock H pulse width	0.6	-	-	μs	
TSU:DATA	data setup time	100	-	-	ns	
THD:DATA	data hold time	0	-	0.9	μs	
Tr	SCL& SDA rise time	20+0.1Cb	-	300	ns	
TF	SCL& SDA fall time	20+0.1Cb	-	300	ns	
Cb	Capacity load on each bus line	-	-	400	pF	
Tsu:start	Setup timefor re-START	0.6	-	-	μs	
THD:START	START Hold time	0.6	-	-	μs	
Tsu:stop	Setup time for STOP	0.6	-	-	μs	
TBUF	Bus free times between STOP and START condition	1.3	-	-	μs	

(6) Reset Timing

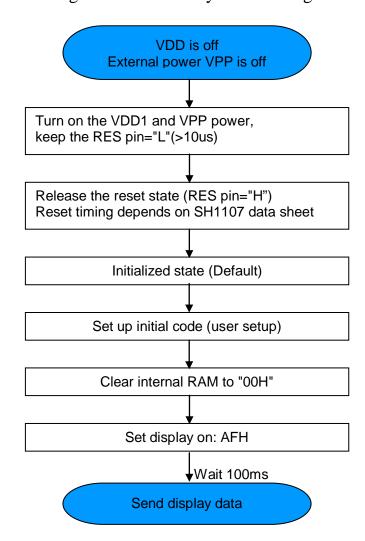


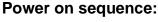
 $(VDD = 1.65 - 3.5V, TA = +25^{\circ}C)$

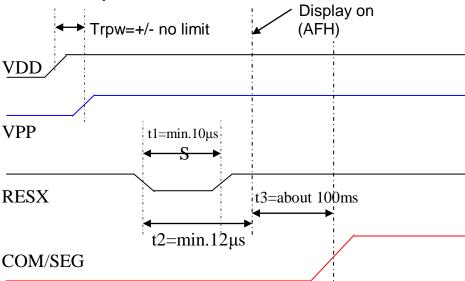

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tR	Reset time	-	-	2.0	∞s	
trw	Reset low pulse width	10.0	-	-	∞s	

■ TIMING OF POWER SUPPLY

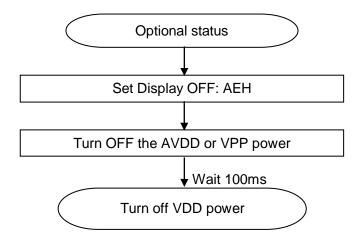
- 1. Power ON/OFF and Initialization
 - 1.1 Built-in DC-DC pump power is being used immediately after turning on the power:

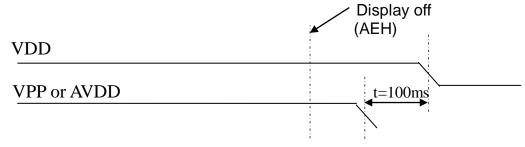



Power on sequence:



1.2 External power is being used immediately after turning on the power:





1.3 Power OFF

Power off sequence:

Note: There will be no damages to the display module if the power sequences are not met.

■ ELECTRO-OPTICAL CHARACTERISTICS (Ta=25°C)

Items		Symbol	Min.	Тур.	Max.	Unit	Remark	
Operating Lui	minance	L	80	100	-	cd/m ²	100% pixels ON	
Power Consu	mption	P	-	TBD	TBD	mW	30% pixels ON L= 100 cd/m2	
Frame Freq	uency	Fr	-	100	-	Hz	-	
Color	Red	CIE x	0.61	0.65	0.69	CIE1931	Darkroom	
Coordinate	Reu	CIE y	0.30	0.34	0.38	CIE1931		
Response	Rise	Tr	-	-	0.02	ms	-	
Time	Decay	Td	-	-	0.02	ms	-	
Contrast R	Contrast Ratio		10000:1	-	-	-	Darkroom	
Viewing Angle		$\triangle \theta$	160	-	-	Degree	-	
Operating Lif	e Time	Тор	30,000	-	-	Hours	$L=100 \text{ cd/m}^2$	

Note:

- 1. 100 cd/m² is base on V_{DD}=TBD, V_{CC}= TBD, contrast command setting TBD;
- 2. Contrast ratio is defined as follows:

3. Life Time is defined when the Luminance has decayed to less than 50% of the initial Luminance specification. (Odd and even chess board alternately displayed), (The initial value should be closed to the typical value after adjusting.).

■ INTERFACE PIN CONNECTIONS

NC No Connection.	No.	Symbol	Description
VSS Ground pin.	1	NC	No Connection.
NC No Connection.	2	VSS	Ground pin.
S	3	VSS	Ground pin.
MPU interface mode select pads. This pad is the chip select input. When CSB = "L", then the chip select becomes active, and data/command I/O is enabled. RESB This pad is the chip select input. When CSB = "L", then the chip select becomes active, and data/command I/O is enabled. This is a reset signal input pad. When RESB is set to "L", the settings are initialized. The reset operation is performed by the RES signal level. This is the Data/Command control pad that determines whether the data bits are data or a command. A0 = "H": the inputs at D0 to D7 are treated as display data. A0 = "L": the inputs at D0 to D7 are transferred to the command registers. In I2C interface, this pad serves as SA0 to distinguish the different address of OLED driver. This is a MPU interface input pad. When connected to an 8080 MPU, this is active LOW. This pad connects to the 8080 MPU WR signal. The signals on the data bus are latched at the rising edge of the WR signal when connected to a 6800 Series MPU: This is the read/write control signal input terminal. When R/W = "H": Read. When R/W = "L": Write. This is a MPU interface input pad. When connected to an 8080 series MPU, and the data bus is in an output status when this signal is "L". When connected to a 6800 series MPU, this is active HIGH. This is used as an enable clock input of the 6800 series MPU. This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit standard MPU data bus. When the serial interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SDA). At this time, D2 to D7 are set to high impedance. This is a segment current reference pad. A resistor should be connected between this pad and VSS. Set the current at 15.625 µA. This is a pad for the voltage output high level for common signals. A capacitor should be connected between this pad and VSS. This is the most positive voltage supply pad of the chip. It should be supplied externally.	4	NC	No Connection.
This is a MPU interface mode select pads. RESB This pad is the chip select input. When CSB = "L", then the chip select becomes active, and data/command I/O is enabled. RESB This is a reset signal input pad. When RESB is set to "L", the settings are initialized. The reset operation is performed by the RES signal level. This is the Data/Command control pad that determines whether the data bits are data or a command. A0 = "H": the inputs at D0 to D7 are treated as display data. A0 = "L": the inputs at D0 to D7 are treated as display data. A0 = "L": the inputs at D0 to D7 are treated as display data. A0 = "this pad serves as SA0 to distinguish the different address of OLED driver. This is a MPU interface input pad. When connected to an 8080 MPU, this is active LOW. This pad connects to the 8080 MPU WR signal. The signals on the data bus are latched at the rising edge of the WR signal input terminal. When R/W = "th": Read. When R/W = "L": Write. This is a MPU interface input pad. When connected to an 8080 series MPU, it is active LOW. This pad is connected to the RDB signal of the 8080 series MPU, and the data bus is in an output status when this signal is "L". When connected to a 6800 series MPU, this is active HIGH. This is used as an enable clock input of the 6800 series MPU. This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit standard MPU data bus. When the serial interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SDA). At this time, D2 to D7 are set to high impedance. This is a segment current reference pad. A resistor should be connected between this pad and VSS. Set the current at 15.625 µA. This is a pad for the voltage output high level for common signals. A capacitor should be connected between this pad and VSS. This is the most positive voltage supply pad of the chip. It should be supplied externally.	5	VDD	1.65 - 3.5V Power supply for logic and input.
RESB This pad is the chip select input. When CSB = "L", then the chip select becomes active, and data/command I/O is enabled. This is a reset signal input pad. When RESB is set to "L", the settings are initialized. The reset operation is performed by the RES signal level. This is the Data/Command control pad that determines whether the data bits are data or a command. A0 = "H": the inputs at D0 to D7 are treated as display data. A0 = "L": the inputs at D0 to D7 are treated as display data. A0 = "L": the inputs at D0 to D7 are transferred to the command registers. In I2C interface, this pad serves as SA0 to distinguish the different address of OLED driver. This is a MPU interface input pad. When connected to an 8080 MPU, this is active LOW. This pad connects to the 8080 MPU WR signal. The signals on the data bus are latched at the rising edge of the WR signal. When connected to a 6800 Series MPU: This is the read/write control signal input terminal. When R/W = "H": Read. When R/W = "L": Write. This is a MPU interface input pad. When connected to an 8080 series MPU, and the data bus is in an output status when this signal is "L". When connected to a 6800 series MPU, this is active LOW. This pad is connected to the RDB signal of the 8080 series MPU, and the data bus is in an output status when this signal is "L". When connected to a 6800 series MPU, this is active HIGH. This is used as an enable clock input of the 6800 series MPU. This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit standard MPU data bus. When the serial interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SD). At this time, D2 to D7 are set to high impedance. This is a segment current reference pad. A resistor should be connected between this pad and VSS. This is a pad for the voltage output high level for common signals. A capacitor should be connected between this pad and VSS.	6	IM1	MPU interface mode select pads.
RESB CSB data/command I/O is enabled.	7	IM2	MPU interface mode select pads.
initialized. The reset operation is performed by the RES signal level. This is the Data/Command control pad that determines whether the data bits are data or a command. A0 = "H": the inputs at D0 to D7 are treated as display data. A0 = "L": the inputs at D0 to D7 are treated as display data. A0 = "L": the inputs at D0 to D7 are transferred to the command registers. In I2C interface, this pad serves as SA0 to distinguish the different address of OLED driver. This is a MPU interface input pad. When connected to an 8080 MPU, this is active LOW. This pad connects to the 8080 MPU WR signal. The signals on the data bus are latched at the rising edge of the WR signal. When connected to a 6800 Series MPU: This is the read/write control signal input terminal. When R/W = "H": Read. When R/W = "L": Write. This is a MPU interface input pad. When connected to an 8080 series MPU, it is active LOW. This pad is connected to the RDB signal of the 8080 series MPU, and the data bus is in an output status when this signal is "L". When connected to a 6800 series MPU, this is active HIGH. This is used as an enable clock input of the 6800 series MPU. This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit standard MPU data bus. When the serial interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SI). At this time, D2 to D7 are set to high impedance. When the 12C interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SDA). At this time, D2 to D7 are set to high impedance. This is a segment current reference pad. A resistor should be connected between this pad and VSS. Set the current at 15.625 μA. This is a pad for the voltage output high level for common signals. A capacitor should be connected between this pad and VSS.	8	CSB	
data or a command. A0 = "H": the inputs at D0 to D7 are treated as display data. A0 = "L": the inputs at D0 to D7 are transferred to the command registers. In I2C interface, this pad serves as SA0 to distinguish the different address of OLED driver. This is a MPU interface input pad. When connected to an 8080 MPU, this is active LOW. This pad connects to the 8080 MPU WR signal. The signals on the data bus are latched at the rising edge of the WR signal. When connected to a 6800 Series MPU: This is the read/write control signal input terminal. When R/W = "H": Read. When R/W = "L": Write. This is a MPU interface input pad. When connected to an 8080 series MPU, it is active LOW. This pad is connected to the RDB signal of the 8080 series MPU, and the data bus is in an output status when this signal is "L". When connected to a 6800 series MPU, this is active HIGH. This is used as an enable clock input of the 6800 series MPU. This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit standard MPU data bus. When the serial interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SDA). At this time, D2 to D7 are set to high impedance. This is a segment current reference pad. A resistor should be connected between this pad and VSS. Set the current at 15.625 μA. This is a pad for the voltage output high level for common signals. A capacitor should be connected between this pad and VSS. This is the most positive voltage supply pad of the chip. It should be supplied externally.	9	RESB	
active LOW. This pad connects to the 8080 MPU WR signal. The signals on the data bus are latched at the rising edge of the WR signal. When connected to a 6800 Series MPU: This is the read/write control signal input terminal. When R/W = "H": Read. When R/W = "L": Write. This is a MPU interface input pad. When connected to an 8080 series MPU, it is active LOW. This pad is connected to the RDB signal of the 8080 series MPU, and the data bus is in an output status when this signal is "L". When connected to a 6800 series MPU, this is active HIGH. This is used as an enable clock input of the 6800 series MPU. This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit standard MPU data bus. When the serial interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SI). At this time, D2 to D7 are set to high impedance. When the I2C interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SDA). At this time, D2 to D7 are set to high impedance. This is a segment current reference pad. A resistor should be connected between this pad and VSS. Set the current at 15.625 µA. This is a pad for the voltage output high level for common signals. A capacitor should be connected between this pad and VSS. This is the most positive voltage supply pad of the chip. It should be supplied externally.	10	A0	data or a command. A0 = "H": the inputs at D0 to D7 are treated as display data. A0 = "L": the inputs at D0 to D7 are transferred to the command registers. In I2C interface, this pad serves as SA0 to distinguish the different address of
active LOW. This pad is connected to the RDB signal of the 8080 series MPU, and the data bus is in an output status when this signal is "L". When connected to a 6800 series MPU, this is active HIGH. This is used as an enable clock input of the 6800 series MPU. This is an 8-bit bi-directional data bus that connects to an 8-bit or 16-bit standard MPU data bus. When the serial interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SI). At this time, D2 to D7 are set to high impedance. When the I2C interface is selected, then D0 serves as the serial data input pad (SCL) and D1 serves as the serial data input pad (SDA). At this time, D2 to D7 are set to high impedance. This is a segment current reference pad. A resistor should be connected between this pad and VSS. Set the current at 15.625 μA. This is a pad for the voltage output high level for common signals. A capacitor should be connected between this pad and VSS. This is the most positive voltage supply pad of the chip. It should be supplied externally.	11	WRB	active LOW. This pad connects to the 8080 MPU WR signal. The signals on the data bus are latched at the rising edge of the WR signal. When connected to a 6800 Series MPU: This is the read/write control signal input terminal. When
MPU data bus. When the serial interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SI). At this time, D2 to D7 are set to high impedance. When the I2C interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SDA). At this time, D2 to D7 are set to high impedance. This is a segment current reference pad. A resistor should be connected between this pad and VSS. Set the current at 15.625 μA. This is a pad for the voltage output high level for common signals. A capacitor should be connected between this pad and VSS. This is the most positive voltage supply pad of the chip. It should be supplied externally.	12	RDB	active LOW. This pad is connected to the RDB signal of the 8080 series MPU, and the data bus is in an output status when this signal is "L". When connected to a 6800 series MPU, this is active HIGH. This is used as an enable clock input of
this pad and VSS. Set the current at 15.625 μA. This is a pad for the voltage output high level for common signals. A capacitor should be connected between this pad and VSS. This is the most positive voltage supply pad of the chip. It should be supplied externally.	13~20	D0~D7	MPU data bus. When the serial interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial data input pad (SI). At this time, D2 to D7 are set to high impedance. When the I2C interface is selected, then D0 serves as the serial clock input pad (SCL) and D1 serves as the serial
should be connected between this pad and VSS. This is the most positive voltage supply pad of the chip. It should be supplied externally.	21	IREF	This is a segment current reference pad. A resistor should be connected between
This is the most positive voltage supply pad of the chip. It should be supplied externally.	22	VCOMH	This is a pad for the voltage output high level for common signals. A capacitor
· · · · · · · · · · · · · · · · · · ·	23	VPP	This is the most positive voltage supply pad of the chip. It should be supplied
	24	NC	i i

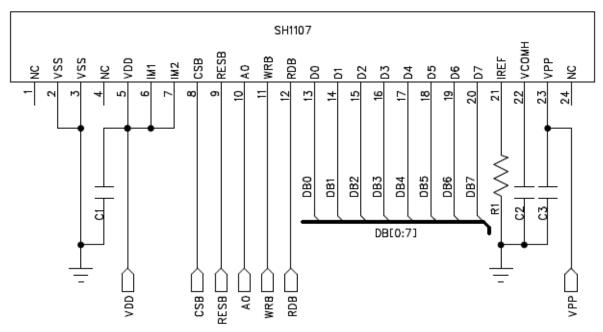
■ COMMAND TABLE

Command						Code						Function	
Command	A0			D7	D6	D5	D4	D3	D2	D1	D0	. 33 (1011	
Set Column Address 4 lower bits	0	1	0	0	0	0	0	Lowe	er colui	mn add	dress	Sets 4 lower bits of column address of display RAM in register. (POR = 00H)	
2.Set Column Address 4 higher bits	0	1	0	0	0	0	1	0		ner col		Sets 4 higher bits of column address of display RAM in register. (POR = 10H)	
3.Set memory addressing mode	0	1	0	0	0	1	0	0	0 0 D		D	D = 1, Vertical Addressing Mode D = 0, Page Addressing Mode (POR=20H)	
The Contrast Control Mode Set	0	1	0	1	0	0	0	0	0	0	1	Setting of the display.	
Contrast Data Register Set	0	1	0			(Contra	st Data from 00 to F			from 00 to FF. (POR = 80H)		
5. Set Segment Re-map (ADC)	0	1	0	1	0	1	0	0	0	0	ADC	The down (0) or up (1) rotation. (POR = A0H)	
6. Set Multiplex Ration	0	1	0	1	0	1	0	1	0	0	0	This command switches multiplex mode to any	
o. Get Waltiplex Ration	0	1	0	-	- Multiplex Ratio					multiplex ratio from 1 to 128 (POR = 7FH)			
7. Set Entire Display OFF/ON	0	1	0	1	0	1	0	0	1	0	D	= A4H)	
8. Set Normal/ Reverse Display	0	1	0	1	0	1	0	0	1	1	D	Normal indication (0) when low, but reverse indication (1) when high. (POR = A6H)	
Set display offset	0	1	0	1	1	0	1	0	0	1	1	This is a double byte command that specifies the mapping of display start line	
a. Get display offset	0	1	0	-				COMx				to one of COM0 -127. (POR = 00H)	
10. DC-DC Control	0	1	0	1	0	1	0	1	1	0	1	This command is to control	
Mode Set DC-DC Setting Mode Set	0	1	0	1	0	0	0	F2 F1 F0 D will be turned on w on converter (1) or		the DC-DC voltage DC-DC will be turned on when display on converter (1) or DC-DC OFF (0). (POR = 81H)			

Command Table (Continued)

Command						Code						Function	
Command	A0			D7	D6	D5	D4	D3	D2	D1	D0	- Tunction	
11. Display OFF/ON	0	1	0	1	1 0 1 0 1 1 D		Turns on OLED panel (1) or turns off (0). (POR = AEH)						
12. Set Page Address	0	1	0	1	0	1	1	Page Address		6	Specifies page address to load display RAM data to = B0H)		
13 Set Common Output Scan Direction	0	1	0	1	1	0	0	D	*	*	*	Scan from COM0 to COM - 1] (0) or Scan from COM -1] to COM0 (1). (POR = COH)	
14. Set Display Divide Ratio/Oscillator Frequency Mode Set	0	1	0	1	1	0	1	0	1	0	1	the frequency of the internal display clocks. (POR = 50H)	
Divide Ratio/Oscillator Frequency Data Set	0	1	0	Osc	Oscillator Frequency Divide Ratio								
15. Dis-charge / Pre-charge Period Mode Set	0	1	0	1	1	0	1	1	0	0	1	the duration of the dis-charge and pre-charge	
Dis-charge /Pre-charge Period Data Set	0	1	0	Dis	Dis-charge Period Pre-charge Period			period. (POR = 22H)					
16. VCOM Deselect Level Mode Set	0	1	0	1	1	0	1	1 0 1 1		1	This command is to set the		
VCOM Deselect Level Data Set	0	1	0			VC) = MC	β ₁ X V	REF)			common pad output voltage level at deselect stage. (POR = 35H)	
17. Set Display Start	0	1	0	1	1	0	1	1	1	0	0		
Line	0	1	0	-			S	Start lin	е			COM0.	
18. Read-Modify-Write	0	1	0	1	1	1	0	0	0	0	0	Read-Modify-Write start.	
19. End	0	1	0	1	1	1	0	1	1	1	0	Read-Modify-Write end.	
20. NOP	0	1	0	1	1 1 1 0 0 1 1			1	Non-Operation Command				
21 Write Display Data	1	1	0		Write RAM data								
22 Read ID	0	0	1	BUSY ON/ OFF ID									
23. Read Display Data	1	0	1		Read RAM data								

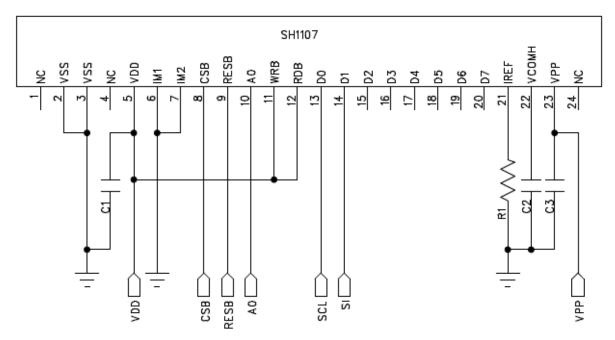
Note: Do not use any other command, or the system malfunction may result.



■ INITIALIZATION CODE

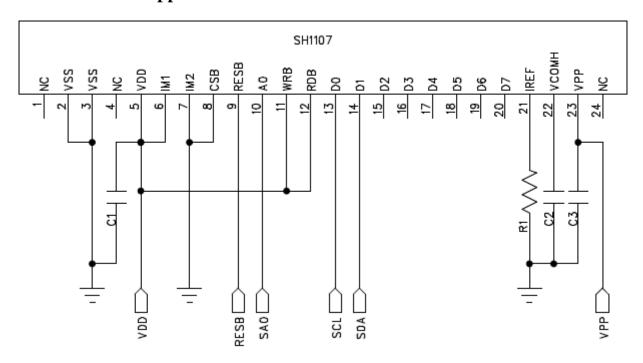
```
void Initial_1107()
    WMLCDCOM(0xAE);
                           //Display OFF
                           //Set Column Address 4 lower bits
   WMLCDCOM(0x0F);
    WMLCDCOM(0x17);
                           //Set Column Address 4 higher bits
    WMLCDCOM(0xA0);
                           //Set Segment Re-map
                           //Set Dis-charge/Pre-charge Period
    WMLCDCOM(0xD9);
    WMLCDCOM(0x89);
    WMLCDCOM(0xD5);
                           //Set Display Clock Divide Ratio/Oscillator Frequency
    WMLCDCOM(0xB0);
   WMLCDCOM(0x20);
                           //Set Page Addressing Mode
   WMLCDCOM(0xDB);
                            //Set VCOM
   WMLCDCOM(0x35);
    WMLCDCOM(0x81);
                            //Set Contrast
   WMLCDCOM(CONTRAST);
   WMLCDCOM(0xC0);
                           //Set Common Output Scan Direction
   WMLCDCOM(0xA4);
                           //Set Entire Display OFF
   WMLCDCOM(0xA6);
                           //Set Normal/Reverse Display
                           //Set DC-DC OFF
   WMLCDCOM(0xAD);
   WMLCDCOM(0x80);
   Clear();
   WMLCDCOM(0xAF);
}
```

■ SCHEMATIC EXAMPLE


♦ 8080 Series Interface Application Circuit

NOTE:

- 1. C1 ~ C3: 4.7μ F.
- 2. R1: about 750 K Ω , R1 = (Voltage at IREF VSS)/IREF
- 3. The capacitor and the resistor value are recommended value. Select the appropriate value against module application.


◆ 4-wire SPI Serial Interface Application Circuit:

NOTE:

- 1. C1 ~ C3: 4.7μ F.
- 2. R1: about 750 K Ω , R1 = (Voltage at IREF VSS)/IREF
- 3. The capacitor and the resistor value are recommended value. Select the appropriate value against module application.

♦ I2C Interface Application Circuit:

NOTE:

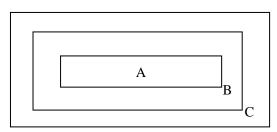
- 1. $C1 \sim C3:4.7 \mu F$
- 2. R1: Recommend 750 K Ω
- 3. The least significant bit of the slave address is set by connecting the input SA0 to either logic 0(VSS) or 1(VDD) The positive supply of pull-up resistor must equal to the value of VDD. Recommend the value of resistor Rp equal to 1.5 K Ω
- 4. The capacitor and the resistor value are recommended value. Select the appropriate value against module application.

■ RELIABILITY TESTS

	Item	Condition	Criterion			
High Ten	nperature Storage (HTS)	80±2℃, 200 hours	 After testing, the function test is ok. After testing, no 			
High Tem	perature Operating (HTO)	70±2°C, 96 hours	addition to the defect. 3. After testing, the change of luminance should be within ±50%			
Low Ten	nperature Storage (LTS)	-30±2°C, 200 hours	of initial value. 4. After testing, the change for the mono and			
Low Temp	perature Operating (LTO)	-20±2℃, 96 hours	area color must be within $(\pm 0.02, \pm 0.02)$ and for the full color it must be within $(\pm 0.04, \pm 0.04)$			
/ Hig	Temperature gh Humidity HTHHS)	50±3°C, 90%±3%RH, 120 hours	of initial value based on 1931 CIE coordinates. 5. After testing, the			
Thermal Sho	ock (Non-operation) (TS)	-20±2°C ~ 25°C ~ 70±2°C (30min) (5min) (30min) 10cycles	change of total current consumption should be within $\pm 50\%$ of initial value.			
Vibration (Packing) Drop	10~55~10Hz,amplitu de 1.5mm, 1 hour for each direction x, y, z Height: 1 m, each time for 6 sides, 3	 One box for each test. No addition to the cos defects. 				
(Packing) ESD	edges, 1 angle ±8kV (R: 330Ω C:	1. After testing, cosmetic should not happen.	c and electrical defects			
(finished product housing) = 8kV (R: 33002 C: 150pF, 10times, air discharge)		2. In case of malfunction or defect caused by ESD damage, it would be judged as a good part if it would be recovered to normal state after resetting.				

Note:

- 1) For each reliability test, the sample quantity is 3, and only for one test item.
- 2) The HTHHS test is requested the Pure Water(Resistance>10M Ω).
- 3) The test should be done after 2 hours of recovery time in normal environment.


■ OUTGOING QUALITY CONTROL SPECIFICATION

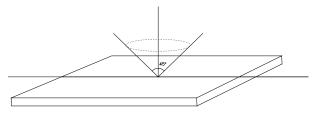
♦ Standard

According to GB/T2828.1-2003/ISO 2859-1: 1999 and ANSI/ASQC Z1.4-1993, General Inspection Level II.

♦ Definition

- 1. Major defect: The defect that greatly affect the usability of product.
- 2. Minor defect: The other defects, such as cosmetic defects, etc.
- 3. Definition of inspection zone:

Zone A: Active Area


Zone B: Viewing Area except Zone A

Zone C: Outside Viewing Area

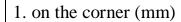
Note: As a general rule, visual defects in Zone C are permissible, when it is no trouble of quality and assembly to customer's product.

♦ Inspection Methods

1. The general inspection: under 20W x 2 or 40W fluorescent light, about 30cm viewing distance, within 45° viewing angle, under 25 ± 5 °C.

2. The luminance and color coordinate inspection: By PR705 or BM-7 or the equal equipments, in the dark room, under 25 ± 5 °C.

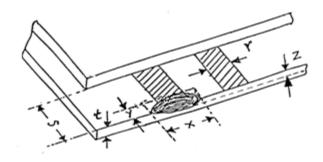
♦ Inspection Criteria


1. Major defect: AQL= 0.65

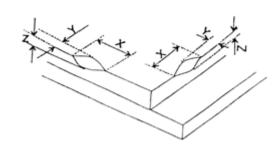

Item	Criterion
	1. No display or abnormal display is not accepted
Function Defect	2. Open or short is not accepted.
	3. Power consumption exceeding the spec is not accepted.
Outline Dimension	Outline dimension exceeding the spec is not accepted.
Glass Crack	Glass crack tends to enlarge is not accepted.

2. Minor Defect: AQL= 1.5

Item		Criterion							
	G: (Accepted Q	Q ty					
	Size (Area A + Area B	Area C						
Spot Defect		Φ≦0.07	Ignored						
(dimming and	(() Y	$0.07 < \Phi \le 0.10$	3						
lighting spot)		0.10<Φ≦0.15	1	Ignored					
	<u>X</u>	0.15<Φ	0						
	Note: $\Phi = (x + y) / 2$	2							
	L (Length): mm	W (Width): mm	Area A + Area B	Area C					
Line Defect	/	W ≤ 0.02	Ignored						
(dimming and	L≦3.0	$0.02 < W \le 0.03$	2						
lighting line)	L≦2.0	$0.03 < W \le 0.05$	1	Ignored					
	/	0.05 <w< td=""><td>As spot defect</td><td></td></w<>	As spot defect						
Remarks: The total of spot defect and line defect shall not exceed 4 PCS. The dist									
between two lii	nes defects must excee Stain which can be w		a soft cloth or simil	lar					
Polarizer	cleaning is accepted,								
Stain	Line Defect.								
	1. If scratch can be seen during operation, according to the criterions of the Spot Defect and the Line Defect.								
	2. If scratch can be seen only under non-operation or some special								
	angle, the criterion is		peraction of some sp	,00141					
Polarizer	L (Length): mm	W (Width): mm	Area A + Area B	Area C					
Scratch	/	$W \leq 0.02$	Ignore						
	3.0 <l≦5.0< td=""><td>$0.02 < W \le 0.04$</td><td>2</td><td></td></l≦5.0<>	$0.02 < W \le 0.04$	2						
	L≦3.0	$0.04 < W \le 0.06$	1	Ignore					
	/	0.06 <w< td=""><td>0</td><td></td></w<>	0						
	Siz	ze	Area A + Area B	Area C					
D-1 A:		Φ≦0.20	Ignored						
Polarizer Air Bubble	(* * * * * * * * * * * * * * * * * * *	$0.20 < \Phi \leq 0.30$	2						
Duoole		$0.30 < \Phi \leq 0.50$	1	Ignored					
	X	0.50<₽	0						



X	≤ 1.5
y	≤ 1.5
Z	≤ t


2. On the bonding edge (mm)

Glass Defect (Glass Chipped)

X	≤ a/4
y	\leq s/3 & \leq 0.7
Z	$\leq t$

3. On the other edges (mm)

X	\leq a / 8
y	≤ 0.7
Z	≤ t

Note: t: glass thickness; s: pad width; a: the length of the edge.

	1vote. t. glass thickness, s. pad width, a. the length of the edge.	
TCP Defect	Crack, deep fold and deep pressure mark on the TCP are not accepted	
Pixel Size	The tolerance of display pixel dimension should be within $\pm 20\%$ of the	
	spec.	
Luminance	Refer to the spec or the reference sample.	
Color	Refer to the spec or the reference sample.	

■ CAUTIONS IN USING OLED MODULE

♦ Precautions For Handling OLED Module:

- 1. OLED module consists of glass and polarizer. Pay attention to the following items when handling:
 - i. Avoid drop from high, avoid excessive impact and pressure.
- ii. Do not touch, push or rub the exposed polarizer with anything harder than an HB pencil lead.
- iii. If the surface becomes dirty, breathe on the surface and gently wipe it off with a soft dry cloth. If it is terrible dirty, moisten the soft cloth with Isopropyl alcohol or Ethyl alcohol. Other solvents may damage the polarizer. Especially water, Ketone and Aromatic solvents.
- iv. Wipe off saliva or water drops immediately, contact the polarizer with water over a long period of time may cause deformation.
- v. Please keep the temperature within specified range for use and storage. Polarization degradation, bubble generation or polarizer peeling-off may occur with high temperature and high humidity
- vi. Condensation on the surface and the terminals due to cold or anything will damage, stain or dirty the polarizer, so make it clean as the way of iii.
- 2. Do not attempt to disassemble or process the OLED Module.
- 3. Make sure the TCP or the FPC of the Module is free of twisting, warping and distortion, do not pull or bend them forcefully, especially the soldering pins. On the other side, the SLIT part of the TCP is made to bend in the necessary case.
- 4. When assembling the module into other equipment, give the glass enough space to avoid excessive pressure on the glass, especially the glass cover which is much more fragile.
- 5. Be sure to keep the air pressure under 120 kPa, otherwise the glass cover is to be cracked.
- 6. Be careful to prevent damage by static electricity:
 - i. Be sure to ground the body when handling the OLED Modules.
- ii. All machines and tools required for assembling, such as soldering irons, must be properly grounded.
- iii. Do not assemble and do other work under dry conditions to reduce the amount of static electricity generated. A relative humidity of 50%-60% is recommended.
- iv. Peel off the protective film slowly to avoid the amount of static electricity generated.
- v. Avoid touching the circuit, the soldering pins and the IC on the Module by the body.
- vi. Be sure to use anti-static package.
- 7. Contamination on terminals can cause an electrochemical reaction and corrode the terminal circuit, so make it clean anytime.
- 8. All terminals should be open, do not attach any conductor or semiconductor on the terminals.
- 9. When the logic circuit power is off, do not apply the input signals.
- 10. Power on sequence: $V_{DD} \rightarrow V_{CC}$, and power off sequence: $V_{CC} \rightarrow V_{DD}$.

- 11. Be sure to keep temperature, humidity and voltage within the ranges of the spec, otherwise shorten Module's life time, and even make it damaged.
- 12.Be sure to drive the OLED Module following the Specification and datasheet of IC controller, otherwise something wrong may be seen.
- 13. When displaying images, keep them rolling, and avoid one fixed image displaying more than 30 seconds, otherwise the residue image is to be seen. This is the specialty of OLED.

◆ Precautions For Soldering OLED Module:

- 1. Soldering temperature: $260^{\circ}\text{C} \pm 10^{\circ}\text{C}$.
- 2. Soldering time: 3-4 sec.
- 3. Repeating time: no more than 3 times.
- 4. If soldering flux is used, be sure to remove any remaining flux after finishing soldering operation. (This does not apply in the case of a non-halogen type of flux.) It is recommended to protect the surface with a cover during soldering to prevent any damage due to flux spatters

♦ Precautions For Storing OLED Module:

- 1. Be sure to store the OLED Module in the vacuum bag with desiccant.
- 2. If the Module cannot be used up in 1 month after the bag being opened, make sure to seal the Module in the vacuum bag with desiccant again.
- 3. Store the Module in a dark place, do not expose to sunlight or fluorescent light.
- 4. The polarizer surface should not touch any other objects. It is recommended to store the Module in the shipping container.

♦ Limited Warranty

Unless relevant quality agreements signed with customer and law enforcement, for a period of 12 months from date of production, all products (except automotive products) TRULY will replace or repair any of its OLED modules which are found to be functional defect when inspected in accordance with TRULY OLED acceptance standards (copies available upon request). Cosmetic/visual defects must be returned to TRULY within 90 days of shipment. Confirmation of such date should be based on freight documents. The warranty liability of TRULY is limited to repair and/or replacement on the terms above. TRULY won't be responsible for any subsequent or consequential events.

♦ Return OLED Module Under Warranty:

- 1. No warranty in the case that the precautions are disregarded.
- 2. Module repairs will be invoiced to the customer upon mutual agreement. Modules must be returned with sufficient description of the failures or defects.

♦ PRIOR CONSULT MATTER

- 1. For TRULY standard products, we keep the right to change material, process ... for improving the product property without any notice on our customer.
- 2. If you have special requirement about reliability condition, please let us know before you start the test on our samples.